Lattice Diagrams Using Reed Muller Logic
نویسندگان
چکیده
Universal Akers Arrays (UAA) allow to realize arbitrary Boolean function directly in cellular layout but are very area-ine cient. This paper presents an extension of UAAs, called \Lattice Diagrams" in which Shannon, Positive and Negative Davio expansions are used in nodes. An e cient method of mappig arbitrary multi-output incompletely speci ed functions to them is presented. We prove that with these extensions, our concept of regular layout becomes not only feasible but also e cient. Regular layout is a fundamental concept in VLSI design which can have applications to submicron design and designing new ne-grain FPGAs.
منابع مشابه
Remarks on Codes, Spectral Transforms, and Decision Diagrams
In this paper, we discuss definitions, features, and relationships of Reed-Muller transforms, Reed-Muller codes and their generalizations to multiple-valued cases, and Reed-Muller decision diagrams. The novelty in this primarily review paper resides in putting together these concepts in the same context and providing a uniform point of view to their definition in terms of a convolutionwise mult...
متن کاملEfficient Calculation of the Reed-muller Form by Means of the Walsh Transform
The paper describes a spectral method for combinational logic synthesis using the Walsh transform and the Reed-Muller form. A new algorithm is presented that allows us to obtain the mixed polarity Reed-Muller expansion of Boolean functions. The most popular minimisation (sub-minimisation) criterion of the Reed-Muller form is obtained by the exhaustive search of all the polarity vectors. This pa...
متن کاملNew Ternary Fixed Polarity Linear Kronecker Transforms and Their Comparison with Ternary Reed-muller Transform
Two new fixed polarity linear Kronecker transforms executed over GF(3) are introduced in this article. Both transforms are based on recursive equations using Kronecker products what allows to obtain simple corresponding fast transforms and very regular butterfly diagrams. The computational costs to calculate the new pair of transforms and their experimental comparison with ternary Reed-Muller t...
متن کاملTernary Fixed Polarity Linear Kronecker Transforms and their Comparison with Ternary Reed-muller Transform
Two new fixed polarity linear Kronecker transforms executed over GF(3) are introduced in this article. Both transforms are based on recursive equations using Kronecker products what allows to obtain simple corresponding fast transforms and very regular butterfly diagrams. The computational costs to calculate the new pair of transforms and their experimental comparison with ternary Reed–Muller t...
متن کاملBDD Decomposition for Efficient Logic Synthesis
There are two major approaches to the synthesis of logic circuits. One is based on a predominantly algebraic factorization leading to AND/OR logic optimization. The other is based on classical Reed-Muller decompositionmethod and its related decision diagrams, which have been shown to be efficient for XOR-intensive arithmetic functions. Both approaches share the same characteristics: while one i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997